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Sampling error consists of two components: sampling variance and sampling bias.
Sometimes overall sampling error is referred to as sampling mean squared [p. 786 ↓ ]
error (MSE), which can be decomposed as in the following formula:

where P is the true population value, p is the measured sample estimate, and p' is the
hypothetical mean value of realizations of p averaged across all possible replications of
the sampling process producing p.

Sampling variance is the part that can be controlled by sample design factors such as
sample size, clustering strategies, stratification, and estimation procedures. It is the
error that reflects the extent to which repeated replications of the sampling process
result in different estimates. Sampling variance is the random component of sampling
error since it results from "luck of the draw" and the specifie population elements
that are included in each sample. The presence of sampling bias, on the other hand,
indicates that there is a systematic error that is present no matter how many times the
sample is drawn.

Using an analogy with archery, when all the arrows are clustered tightly around the
bull's-eye we say we have low variance and low bias. At the other extreme, if the arrows
are widely scattered over the target and the midpoint of the arrows is off-center, we say
we have high variance and high bias. In-between situations occur when the arrows are
tightly clustered but far off-target, which is a situation of low variance and high bias.
Finally, if the arrows are on-target but widely scattered, we have high variance coupled
with low bias.

Efficient samples that result in estimates that are close to each other and to the
corresponding population value are said to have low sampling variance, low sampling
bias, and low overall sampling error. At the other extreme, samples that yield estimates
that fluctuate widely and vary significantly from the corresponding population values
are said to have high sampling variance, high sampling bias, and high overall sampling
error. By the same token, samples can have average level sampling error by achieving
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high levels of sampling variance combined with low levels of sampling bias, or vice
versa. (In this discussion it is assumed, for the sake of explanation, that the samples
are drawn repeatedly and measurements are made for each drawn sample. In practice,
of course, this is not feasible, but the repeated measurement scenario serves as a
heuristic tool to help explain the concept of sampling variance.)

Sampling Variance

Sampling variance can be measured, and there exist extensive theory and software
that allow for its calculation. All random samples are subject to sampling variance that
is due to the fact that not all elements in the population are included in the sample and
each random sample will consist of a different combination of population elements and
thus will produce different estimates. The extent to which these estimates differ across
all possible estimates is known as sampling variance. Inefficient designs that employ
no or weak stratification will result in samples and estimates that fluctuate widely. On
the other hand, if the design incorporates effective stratification strategies and minimal
clustering, it is possible to have samples whose estimates are very similar, thereby
generating low variance between estimates, thus achieving high levels of sampling
precision.

The main design feature that influences sampling variance is sample size. This can
be seen readily from the following formula for the sampling variance to estimate a
proportion based on a simple random sample design:

where ρ is the sample estimate of the population proportion, q - l—p, and n is the
sample size. (Formula 2 and subsequent formulae are relevant for proportions.
Similar formulae are available for other statistics such as means, but they are more
complicated.)

It can be easily seen from this formula that as n increases, the variance decreases in
direct and inverse proportion. Because sampling variance is usually measured in terms
of the confidence interval and standard error (which is the square root of the sampling
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variance), we usually refer to the impact of an increase in sample size in terms of the
square root of that increase. Thus, to double the sampling precision, that is, reduce the
sampling variance by 50%, we would have to increase the sample size by a factor of 4.

Sampling variance, or its inverse, sampling precision, is usually reported in terms of
the standard error, confidence interval, or more popularly, the margin of error. Under a
simple random sample design, the [p. 787 ↓ ] mathematical formula for the standard
error (3) and the 95% confidence interval for a proportion p (4) are

The margin of sampling error is equal to half the length of the confidence interval as
defined in Formula 4. For example, a proportion of 50% from a sample size of 1,000
would have a margin of error of "plus or minus 3%," meaning that if we were to draw
100 simple random samples of approximate size of 1,000, for about 95 of the samples,
the sample value would differ by no more than 3 percentage points in either direction
from the true population value.

In general, the main drivers of sampling variance are stratification and clustering.
Stratification usually results in a lower sampling variance because the number of
possible samples is reduced in comparison with an unrestricted simple random
sample. Not only is the number of possible samples reduced, but potential outliers
are eliminated. For example, suppose we wanted to sample households in the United
States. An unrestricted random sample might contain households that are all located
in the Northeast—the probability is not high, but it is not zero. However, if we stratify
by region, then we reduce the probability of such a skewed sample to zero. To the
extent that the variable of interest is related to our stratification variables, in this
case geography, stratification will reduce the overall sampling variance. In setting
up the design, therefore, it is important to strive to define strata that are relatively
homogeneous with respect to the variables of interest.

Clustering, on the other hand, works in a very different way. Clustering plays a role in
sample designs that are used for surveys in which the data are collected in person,
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for example, via household visits. Clustering is used to control field costs, especially
those related to travel, which often represent a significant portion of the overall survey
budget. However, this results in fewer degrees of freedom in the sense that the sample
now focuses on a smaller number of sampling units, that is, the first-stage clusters,
often referred to as primary sampling units. For example, selecting an unclustered
sample of 1,000 households throughout the United States would mean that the
households could be located anywhere in the country and, of course, this would result
in large travel costs. Restricting the sample first to 100 clusters (e.g. counties), and
then taking 10 households within each cluster, reduces the travel costs but reduces
our ability to spread the sample effectively over the entire country. This reduction
in efficiency is further exacerbated by the fact that within each cluster, usually a
geographically contiguous area, households tend to be more alike than households
across these units. This phenomenon, called intraclass homogeneity, tends to drive up
the sampling variance because efficiency is lost and the original sample of 1,000 might,
in effect, have only the impact of 100 if, in the extreme case, the clusters are perfectly
homogeneous.

Thus, in summary, with respect to sample design optimization, stratification is beneficial
in that it reduces sampling variance, whereas clustering is to be avoided when possible
or at least minimized as its effect is to increase sampling variance. Usually the effect
of clustering is more marked than that of stratification. In many situations, though,
clustering is necessary for cost reasons; thus, the best clustered design strategy
involves finding a compromise between the cost savings and the penalty to be paid in
terms of lower precision.

Another important factor that influences sampling variance is weighting. Weighting
refers to adjustment factors that account for design deviations such as unequal
probabilities of selection, variable nonre-sponse rates, and the unavoidable introduction
of bias at various steps in the survey process that are corrected for through a process
called post-stratification. The effect of weighting is to increase the sampling variance,
and the extent of this increase is proportional to the variance among the weights.

A useful concept that quantifies and summarizes the impact of stratification, clustering,
and weighting on sampling variance is the design effect, usually abbreviated as deff. It
is the ratio of the true sampling variance taking into account all the complexities of the
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design to the variance that would have been achieved if the sample had been drawn
using a simple random sample, incorporating no stratification, clustering, or weighting.
A value of 1.00 indicates that the complexity of the design had no measurable impact
on the sampling variance. Values less than 1.00 are rare; values larger than 5.00 are
generally considered to be high.

The design effect is closely related to rho (#), the intraclass correlation, mentioned
previously. The following formula shows the relationship between the two: [p. 788 ↓ ]

where deff is the design effect, ρ is the intraclass correlation, and b is the average
cluster size.

The correct calculation of sampling variance, incorporating all the complexities of the
design, is not straightforward. However, there is extensive software currently available
that uses either the empirical bootstrap replication approach or the more theoretically
based Taylor Series expansion. These systems typically allow for many types of
stratification, clustering, and weighting although the onus is always on the user or the
data producer to ensure that relevant information, such as the stratum identifier, cluster
identifier, and weight, are present in the data set.

Sampling Bias

This component of sampling error results from a systematic source that causes the
sampling estimates, averaged over all realizations of the sample, to differ consistently
from their true target population values. Whereas sampling variance can be controlled
through design features such as sample size, stratification, and clustering, we need to
turn to other methods to control and reduce bias as much as possible.

Sampling bias can only be measured if we have access to corresponding population
values. Of course, the skeptic will point out that if such information were available, there
would be little point in drawing a sample and implementing a survey. However, there
are situations in which we can approximate sampling bias by comparing underlying
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information such as basic demographics for the sample with corresponding data from
another, more reliable, source (e.g. census or large national survey) to identify areas in
the data space for which the sample might be underrepresented or overrepresented.

One major source of sampling bias is frame coverage; that is, the frame from which
the sample is drawn is defective in that it fails to include all elements in the population.
This is a serious error because it cannot be detected, and in some cases its impact
cannot even be measured. This issue is referred to as under-coverage because the
frame is missing elements that it should contain. The opposite phenomenon, overcover-
age, is less serious. Overcoverage occurs when the frame includes foreign elements,
that is, elements that do not belong to the target population. However, these elements,
if sampled, can be identified during the field operation and excluded from further
processing. A third potential source of frame bias is duplication. If certain elements
appear several times on the frame, their probabilities of selection are higher and thus
they might be overrepresented in the sample. Furthermore, it is not always known how
many times the elements occur on the frame, in which case it is impossible to ascertain
the extent of the problem and thus the size of the bias.

Sampling bias can also occur as a result of flaws in the sample selection process,
errors in the sample implementation, and programming missteps during the sample
processing stage. An example of bias occurring during sample selection would be a
systematic sample of every fifth unit when, in fact, there is a repeating pattern in the list
and every fifth unit belongs to a special group. An example of how sampling bias can
occur during the sample implementation process is the method interviewers use to visit
households in the field. Field instructions might indicate "every 10th household," and the
interviewer might instead elect to visit households that appear more likely to generate
an interview. This could, and often does, lead to sampling bias. Finally, sampling or
estimation bias can occur during the sample processing stage, for example, by incorrect
calculation of the weighting adjustment factors, giving excessive importance to certain
subpopulations.

One severe challenge faced by all survey practitioners is how to measure bias.
Whereas the estimation of sampling variance emanates from statistical theory (see
Formula 2, presented earlier), the only way to measure sampling bias is to compare
the resulting empirical value with the true target population value. Of course, this is
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problematic because we seldom possess the population value and thus must use
indirect methods to estimate bias. One approach uses data from other sources, such as
the census or large national samples, as surrogates for the population being sampled.
The problem with this strategy is that even the census is subject to error, in terms of
both variance and bias.

It was pointed out previously that weighting tends to increase sampling variance and
reduce precision. The reason weighting is implemented in survey research, in spite
of its negative effect on variance, is that in many cases it can be used to reduce bias
by bringing the sampling distributions more in line with known population distributions.
For example, it is often possible to weight to basic census distributions [p. 789 ↓ ] by
gender and age, even for minor geographical subdivisions such as tracts. To take a
hypothetical example, suppose the sample distribution by gender turns out to be 40%
male, 60% female, a not uncommon result in a typical random-digit dialing telephone
survey. Furthermore, assume that the corresponding census numbers are close to
50:50. Weighting would assign relative adjustment factors of 50/40 to males and 50/60
to females, thus removing the possible bias due to an overrepresentation of females in
the sample.

Challenges

Overall sampling error needs to be viewed in terms of a combination of sampling
variance and sample bias. The ultimate goal is to minimize the mean squared error.
Survey researchers know how to measure sampling variance, and they have a good
handle on how it can be reduced. Sampling bias represents more of a challenge as it is
often difficult to measure and even if it is measurable, bias reduction is often expensive
and problematic to achieve.

It is illustrative to discuss surveys that are based on nonprobability judgment, quota,
or convenience samples—that is, samples that are not based on probability-based
design. One currently prominent example is the Internet-based panel, which consists
of members who choose (self-select) to belong to these panels. That is, the panel
members are not selected randomly and then invited to join the panel, but rather, the
members themselves decide to join the panels, hence the term opt-in populations. This
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means that the underlying frame suffers from undercoverage and many potential types
of bias, only some of which are known. These samples might be appropriate for certain
studies (e.g. focus groups), in which generalizing with confidence to the population
is not an absolute prerequisite. But, in general, these surveys fall short of required
methodological rigor on two counts. In the first place, the probabilities of selection are
usually unknown and often unknowable, thus precluding any chance of calculating
sampling variance. Second, these surveys suffer from coverage and selection bias
issues that, in many cases, are not even measurable.

With the advent of relevant software, surveys now regularly produce large-scale
sampling variance results showing not only standard errors and confidence intervals
but also design effects and measures of intraclass correlation. The results typically are
presented for the entire sample and also for important subpopulations that are relevant
for data users. These are useful not only to shed light on the quality of the data but
also to inform future sample designs. The choice of estimates and subpopulations for
which to publish sampling errors is not simple, and some researchers have developed
"generalized variance functions" that allow users to estimate their own sampling errors
based on the type of variables in question, the sample size, and level of clustering.
However, these results are usually limited to sampling variance, and much less is
calculated, produced, and disseminated with respect to sampling bias. This is due
largely to the difficulty of calculating these measures and to the challenge of separating
sampling bias from other sources of bias, such as nonresponse bias and response bias.

Karol Krotki
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